

Enhancing Oxygen Stability In Low-Cobalt Layered Oxide Cathode Materials

PI: Huolin Xin
University of California, Irvine
Co-PIs: Feng Lin (VT), Kristin Persson (UCB),
Wu Xu (PNNL), Jiang Fan (ALEC)
June 3, 2020

Project ID: bat414

Overview

Timeline

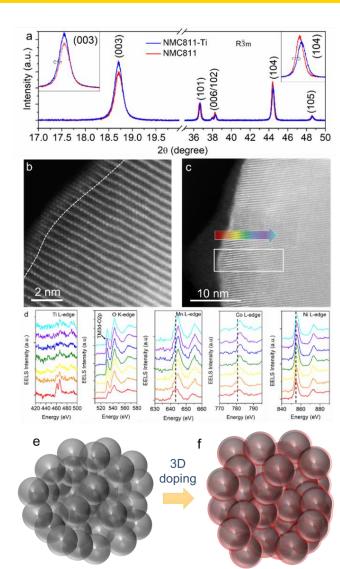
- Project start date: 12/01/2018
 Barriers addressed
- Project end date: 12/31/2021
- Percent complete: 40%

Budget

- Total project funding \$3.125 million
 - DOE Share \$2.5 million
 - Contractor share \$625K
- Funding for FY 2019: \$1.15 million
- Funding for FY 2020: \$1.01 million

Barriers

- - Cost
 - Performance
 - Life


Partners

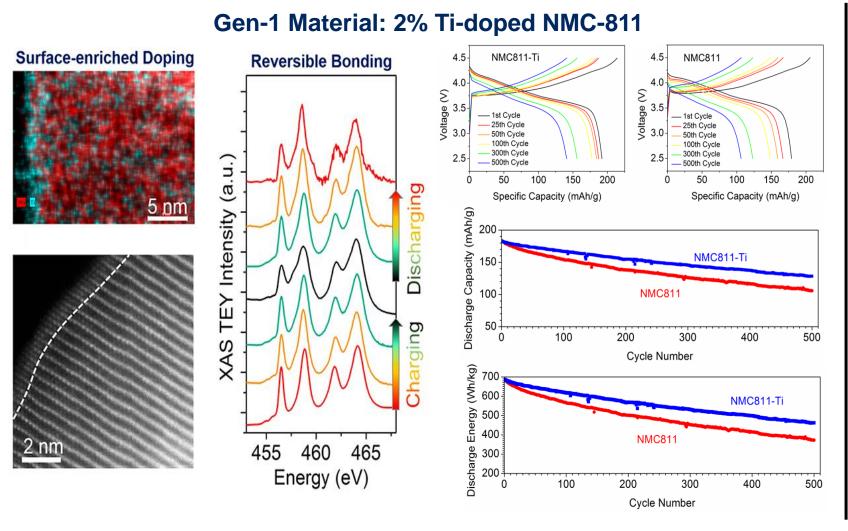
- UC Irvine: Project Lead Huolin Xin
- Virginia Tech: Feng Lin
- UC Berkeley: Kristin Persson
- PNNL: Wu Xu
- American Lithium Energy: Jiang Fan
- Collaborations: BNL, NSLSII, SSRL

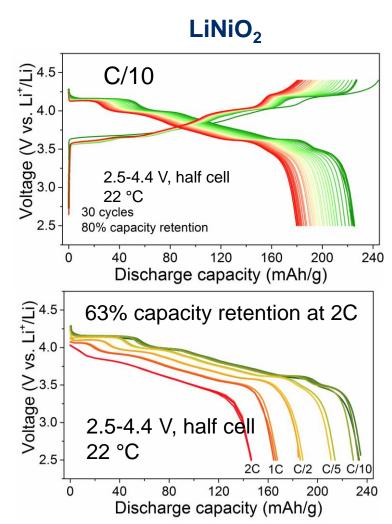
Relevance: Objectives

Overall objectives

- Displace Co while maintaining high-Ni content and high energy density
 - Cobalt concentration < 50 mg/Wh or No-Co
 - Energy density > 750 Wh/kg (C/3, 2.5-4.4 V) at cathode level
 - Cost ≤ \$100/kWh
- Improve cycle and calendar life by retaining oxygen through a 3D doping technology
 - Capacity retention > 80% at 1,000 cycles
 - Energy retention > 80% at 1,000 cycles
 - Calendar life: 15 years
- Deliver a theoretical model
 - High-throughput DFT calculations that rationalize the selection of oxygenretraining surface and bulk dopants
- Formulate new electrolytes
 - New functional additives
 - Understanding of the CEI's influence on high-Ni low-Co cathodes.
- Offer a knowledge base by performing proactive studies
 - Thermal stability, oxygen loss, and the degradation of the cathode/electrolyte interfaces.

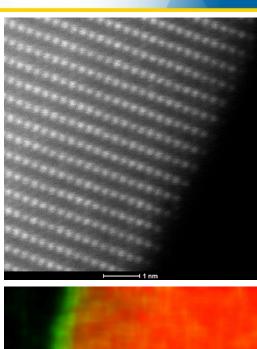
Milestones

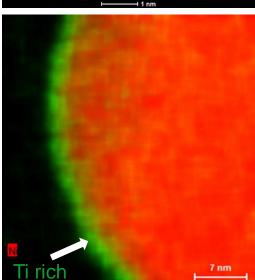

Milestone	Status	Description
Jan 2019 Dopant Selection and Material Synthesis	Completed	Computational down-selection to 2–4 elements for synthesis. Achieve NMC-D electrode materials with Co content <= 3%, Ni >= 90%, Dopant metal (Ti or Al) = 2%
April 2019 Structural Fidelity	Completed	Structural study by synchrotron XRD, and aberration-corrected scanning TEM to confirm that the desired layered structure and 3D composition are achieved.
July 2019 Electrode Performance and Fabrication of PPCs	Completed	Evaluate electrochemical performance of BP 1 materials and compare it with the commercial 811 baseline >100 cycles in Li NMC cells at 4.5 V cutoff and Gr NMC cells at 4.4 V cutoff. Delivery of PPCs to DOE.
October 2019 Go/No Go	Completed	Delivery of a high-Ni and low-Co cathode material with an electrochemical performance comparable to the commercial NMC811 baseline (energy and capacity retention > 90% of NMC811 @ 100 cycles).
Milestone	Status	Description
Jan 2020 Dopant Refinement	Completed	Refine prediction of surface/bulk dopants
April 2020 Synthesis Scale-up	On track	Scale up synthesis of BP 1 materials to 100 g scale.
		Coard up dynamodic or 2
July 2020 Performance Evaluation	On track	Best of BP1 and BP2 materials achieves a comparable performance to the 811 baseline >300 cycles in Gr NMC pouch cells at 4.4 V cutoff.

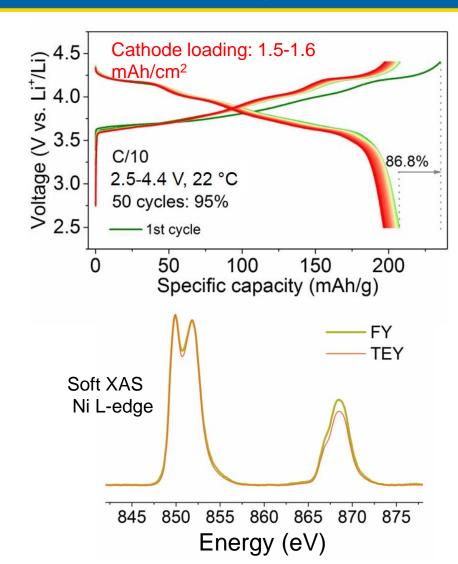

Approach/Strategy

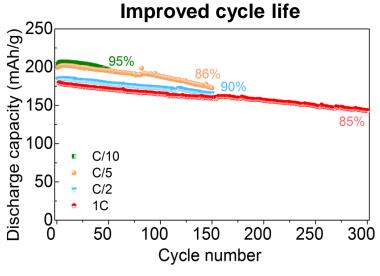
- We utilize a three-dimensional (3D) doping technology that is a hierarchical combination of surface and bulk doping.
 - Surface doping stabilizes the interface between the primary particles and the electrolyte
 - Introduction of dopants to the bulk enhances oxygen stability, conductivity and structural stability in low-Co oxides under high voltage and deep discharging operating conditions.
 - A composition controlled and thermodynamics driven synthesis will be used to accurately achieve the desired 3D doping structures.
- Use high-throughput computational materials design to screen surface and bulk dopants for a low-Co environment.
- Formulate new electrolytes that stabilize the cathode/electrolyte interfaces at deep charging conditions.
- Advanced computational and characterization techniques are developed to study
 - Dopant environment and chemistry
 - Thermal stability, oxygen loss, and the degradation of the cathode/electrolyte interfaces.

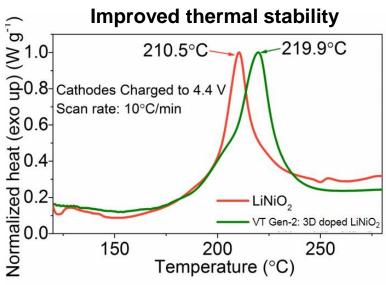
Technical Accomplishments and Progress Gen-1 Material: 2% Ti-doped NMC-811

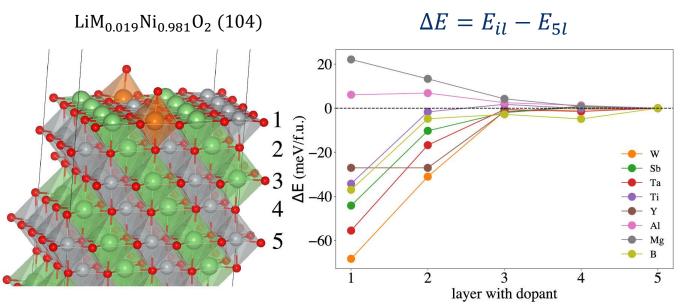





- 3D-doping of Ti is achieved in NMC-811 and cycle life is significantly improved.
- Can we use the 3D doping approach to improve LiNiO₂?




Technical Accomplishments and Progress Gen-2 Co-free Chemistry: 3D-doped LiNiO₂ [Ni 96%, Mg 2%, Ti 2%]

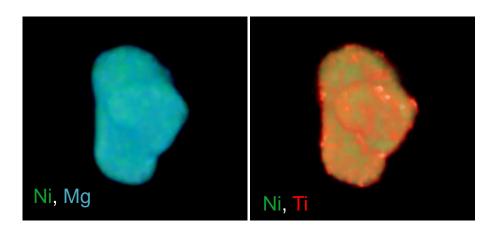


3D-doping of Ti and Mg is achieved in LiNiO₂. Cycle life and thermal stability are much improved compared with LiNiO₂.

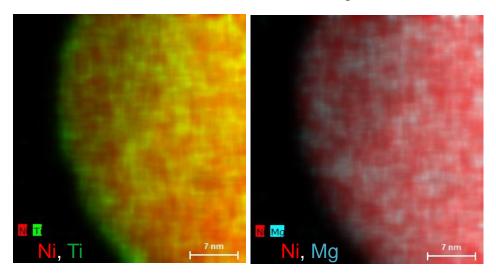
Technical Accomplishments and Progress Rationalize Surface Dopant Segregation

Dopant Segregation Energy

Total number of atoms: 217 (53 Ni + 1M) $\Delta G = \Delta H - T\Delta S = \Delta H + TNk_B(x_Alnx_A + x_Blnx_B) = 0$ Take $\Delta H = \Delta E = 20$ meV/f.u., T = 2517 K For Al, $\Delta H = \Delta E = 6$ meV/f.u., T = 755 K LiNiO₂ is synthesized around 900 K

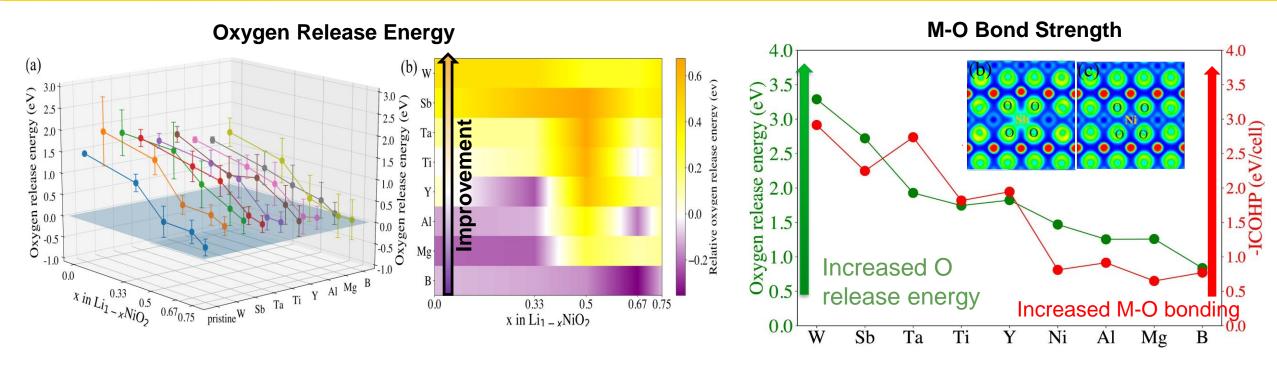

Bulk-enrich: Mg

Surface enrich: W, Sb, Ta, Ti, Y, B


Uniform: Al

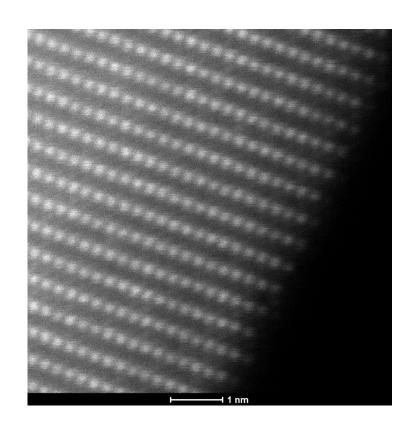
Dopant segregation behavior is thermodynamically driven

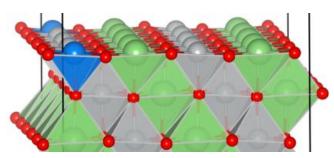
Chemical Electron Tomography

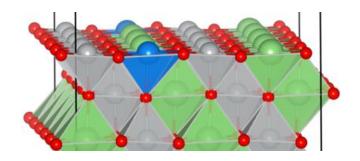


Concentration Map

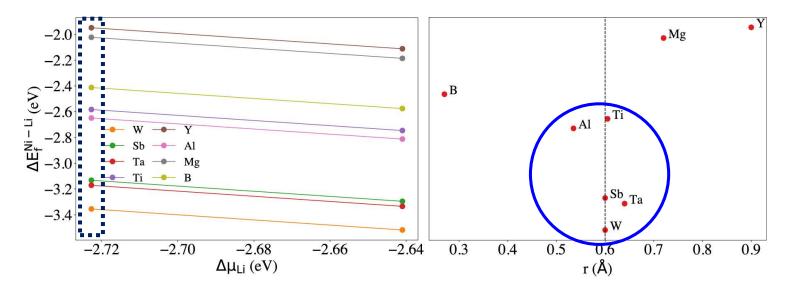
Technical Accomplishments and Progress Computational Downselection of Oxygen Retaining Surface Dopants




- Upon delithiation, the thermodynamic oxygen release energy decreases rapidly
- At high charge state, e.g. 75% of Li extraction, oxygen is close to spontaneously release from the surface for pristine LNO
- W, Sb, Ta, and Ti bond more strongly to oxygen than Ni, Al, Mg, and B, and reduce the oxygen release.

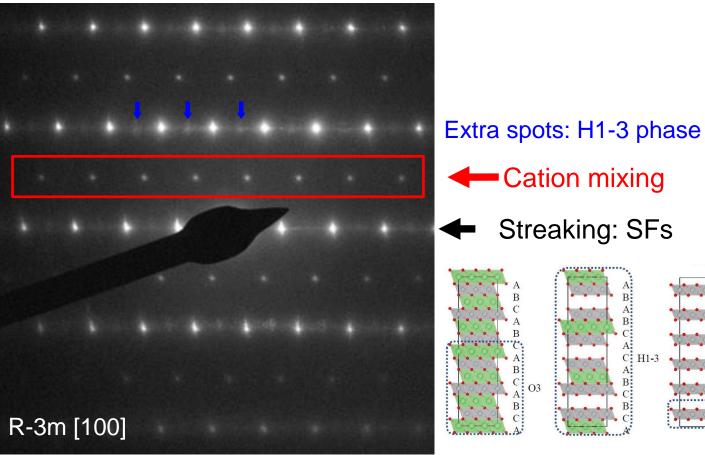

W, Sb, Ta and Ti are found to enhance surface oxygen retention of LiNiO₂

Technical Accomplishments and Progress Preferential Site on the Surface

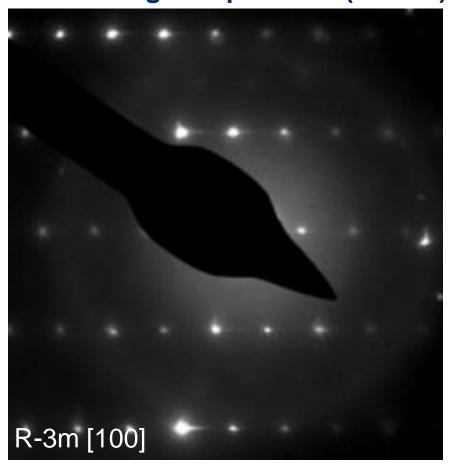


Green: Li Grey: Ni Red: O Blue: Dopant

 ΔE_f^{Ni-Li} : Formation energy difference between doping at Ni and Li site A negative ΔE_f^{Ni-Li} implies Ni site is more favorable than Li site.

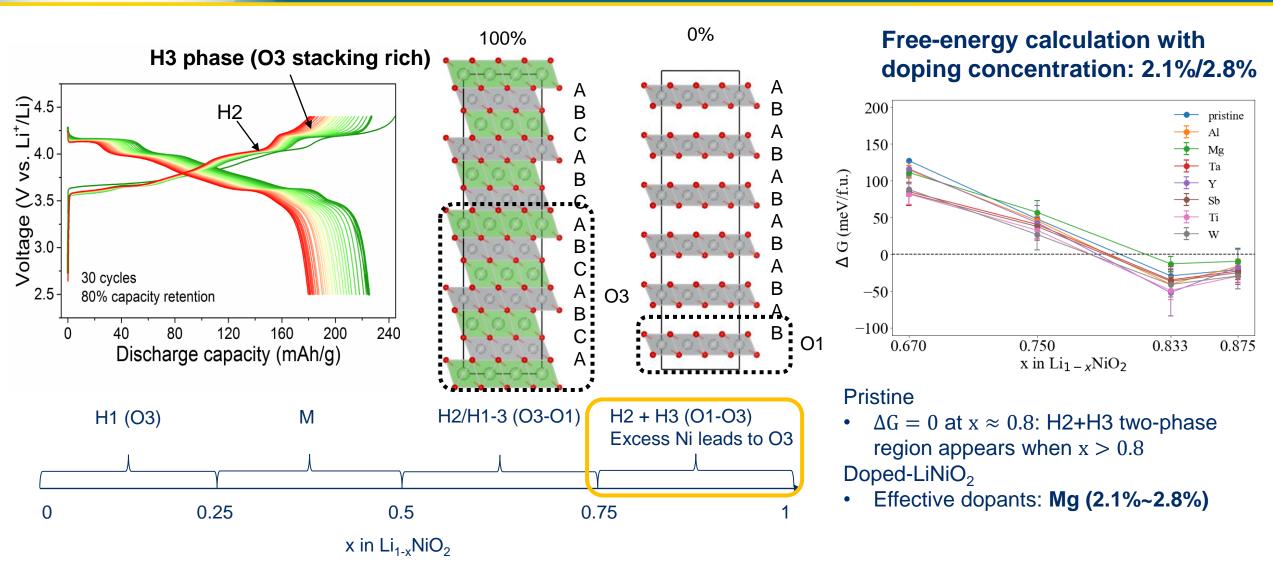


Ti, AI, Sb, Ta and W at low concentration tend to stay in the Ni site on the surface of LiNiO₂



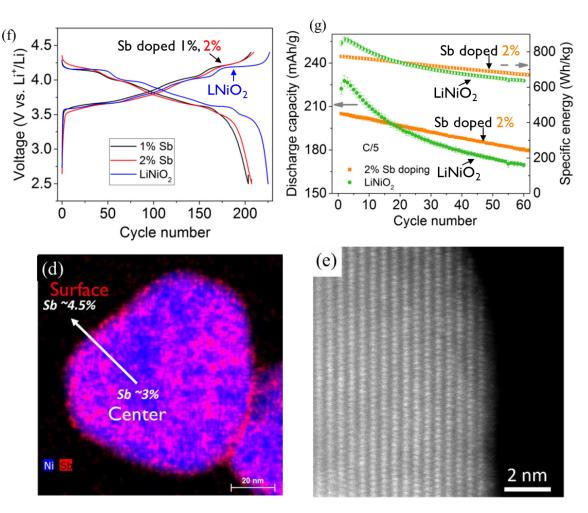
Technical Accomplishments and Progress Structure of charged MgTi-doped LiNiO₂ vs LiNiO₂

Delithiated LNO (at 4.4 V)

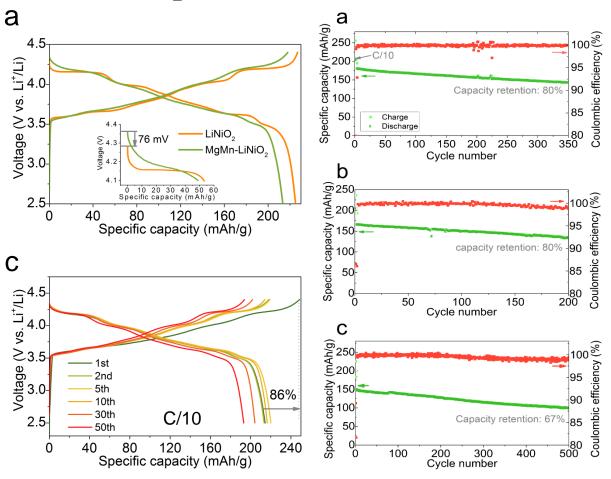

Delithiated MgTi-doped LNO (at 4.4V)

 MgTi co-doping reduces the transition to H1-3 phase and reduced SFs. It also reduces cation mixing.

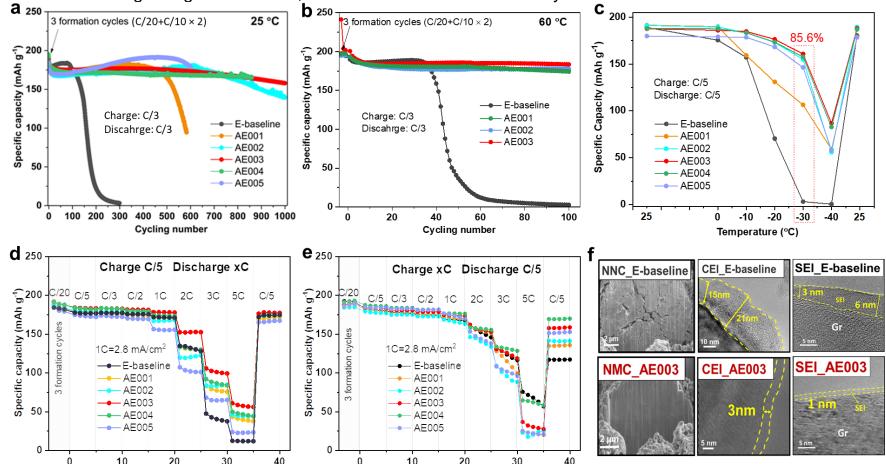

Technical Accomplishments and Progress Reducing the Destructive Phase Transition



Mg is an effective dopant because it can inhibit the H2-H3 two-phase transition.



Technical Accomplishments and Progress New Co-free Chemistries Under Investigation


LiNiO₂ with 2% Mg, 2% Mn co-doping

Two new Co-free chemistries have shown promising electrochemical performance.

Technical Accomplishments and Progress Development of DMC-based LHCEs for Gr||NMC811

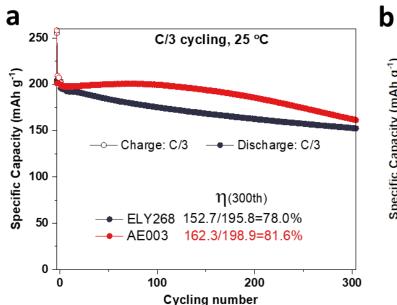
- o 5 new LHCEs (LiFSI in DMC-EC/VC-TTE) were developed for Gr||NMC811 cells.
- o NMC811: 2.8 mAh cm⁻²; Gr: 3.5 mAh cm⁻² (Both from ALEC).
- \circ Voltage range: 2.5 4.4 V, 1C= 2.8 mA cm⁻². 3 formation cycles: 1×C/20 + 2×C/10.

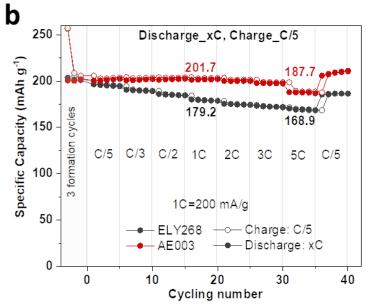
Cycling number

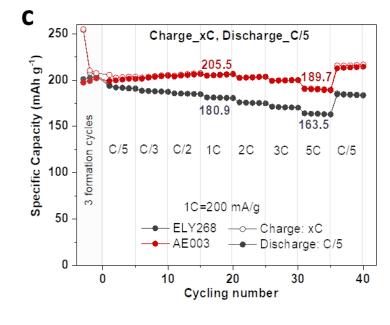
- E-baseline
- 1.0 M LiPF6 in EC-EMC (3:7 by wt.) with 2 wt% VC
 - ✓ AE003: Best cycling stability
 - o 25°C: η(1000th)=85.8%
 - 60°C: η(100th)=94.9%
 - ✓ AE003 & AE004: Better low-T discharge performance. For AE003:
 - -10°C: 98.5% of "25°C"
 - -30°C: 85.6% of "25°C"
 - AE003 and AE004: Best rate capability during charging and discharging up to 3C.
 - ✓ AE003: Effectively suppressed particle cracking.
 - ✓ AE003: Resulted in ultrathin, uniform SEI/CEI compared to E-baseline.
- All LHCEs enable thinner, more uniform and robust SEI/CEI, showing much better cycling stability, rate capability and
- low-temperature discharge performance than E-baseline.

 AE003 shows the best electrochemical performances among the 5 LHCEs.

Cycling number


Advanced Energy Materials, 2020,


DOI: 10.1002/aenm.202000368


Technical Accomplishments and Progress New NMT from scaled-up precursor: Gr||NMT

- o NMT was prepared from the scaled-up precursor (100g/batch).
- NMT: 1.5 mAh cm⁻² (Coated at PNNL); Gr: 1.8 mAh cm⁻² (From ANL CAMP)
- \circ Voltage range 2.5 4.4 V, 1C = 1.5 mA cm⁻² (200 mA g⁻¹)
- 3 formation cycles: 1×C/20 + 2×C/10.

ELY268 (E-baseline)
1.0 M LiPF6 in EC-EMC (3:7 by wt.) with 2 wt% VC

- New NMT material shows higher discharge capacity in AE003 than in ELY268 (i.e. E-baseline) during cycling and rate capability tests.
- AE003 enables superior cycling stability of Gr||NMT, with a capacity retention of 81.6% after 300 cycles.
- Gr||NMT cells with AE003 show superior discharge rate capability, with negligible capacity decay up to 3C, 187.7 mAh g⁻¹ at 5C and 100% recovery after back to C/5.
- Gr||NMT cells with AE003 show better fast charging ability than with ELY268, with negligible capacity decay up to 3C, 189.7 mAh g⁻¹ at 5C and 100% recovery after back to C/5.

Responses to Previous Year Reviewers' Comments

There are no reviewers' comments on this project.

Collaboration and Coordination with Other Institutions

Sub-recipients	Institution	Tasks
Feng Lin	Virginia Tech	Synthesis and X-ray Diagnostics
Kristin Persson	UC Berkeley	High-throughput DFT calculation
Wu Xu	PNNL	Synthesis scale-up and electrolyte formulation
Fan Jiang	American Lithium Energy	Electrode and Cell Fabrication

Collaborators	Institution	Nature of Collaboration
Xiao-Qing Yang	Brookhaven National Lab	X-ray Diagnostics
Kim Kisslinger	Brookhaven National Lab	FIB Sample Prep
Dennis Nordlund	SSRL/SLAC	Soft X-ray Absorption
Jack Kan	Australian Nuclear Science and Technology Organisation. Now at China Spallation Neutron Source.	Neutron Scattering Refinement

Remaining Challenges and Barriers

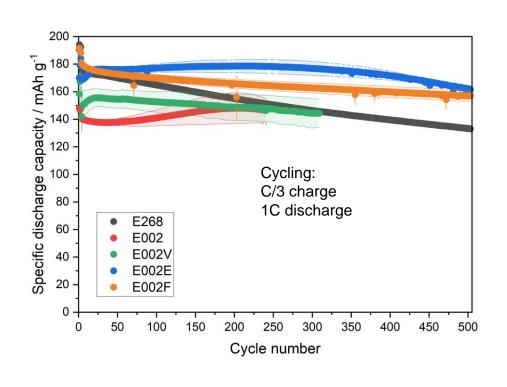
- Improving the thermal stability of these extremely high nickel content chemistries.
- Scale-up of calcination to the hundreds of grams per batch level for project completion cell delivery.

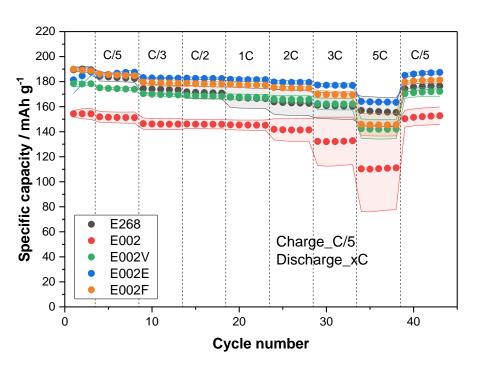
Proposed Future Research

- Deploy the developed electrolytes to single-layer and 2Ahr-scale pouch cells.
- Investigation of cathode-anode cross-talk and study the cathode electrolyte interface and interphases.
- Develop calcination conditions for scaled up synthesis.
- Develop new Co-free chemistries with thermal stability comparable to NMC-622.
- Use experimentally observed surface and bulk transformation and degradation pathways to refine the selection of surface/bulk stabilizing elements for Co-free materials.

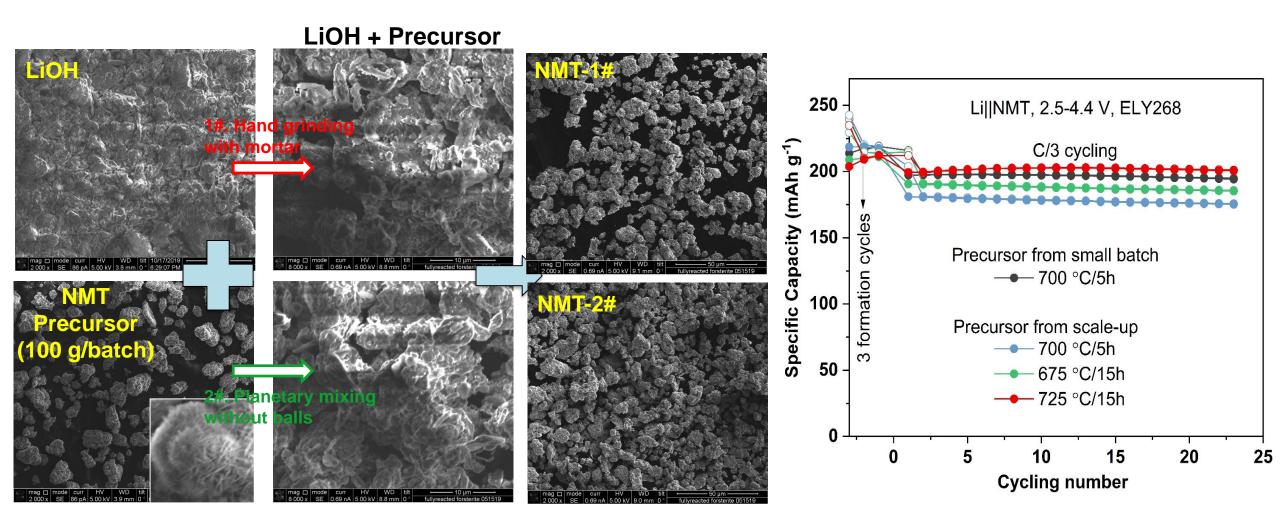
Summary

- First-principle calculations in conjunction with diagnostic studies offer predictions of new dopants that stabilizes the LiNiO₂ surfaces and bulk lattices.
- We have successfully realized 3D doping and developed MgTi-, MgMn- and Sn-doped Co-free LNiO₂ chemistries that meets the energy density target of the project.
- We have developed localized high-concentration electrolytes that introduce a uniform CEI film on the cathode and enhances the stability and cycle life of the MgTi-doped LNiO₂ cathode.
- We have scaled up the coprecipitation synthesis with improved hierarchical morphology and tap density control of secondary cathode particles.



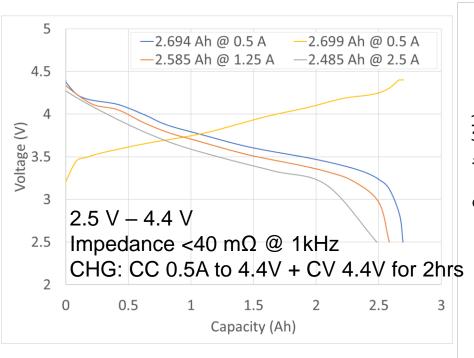

Technical Back-Up Divider Slide

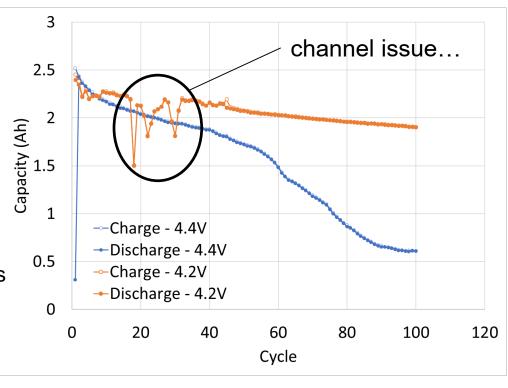
Technical Accomplishments and Progress Optimization of DME-based LHCEs for Gr||NMC811


- 4 new DME-based LHCEs (LiFSI in DME-EC/VC/FEC-TTE) were developed for Gr||NMC811 cells.
- o NMC811: 1.5 mAh cm⁻²; Gr: 1.8 mAh cm⁻² (Both from ANL).
- Voltage range: 2.5 4.4 V, 1C = 1.5 mA cm⁻². 3 formation cycles: $1 \times C/20 + 2 \times C/10$.

- Suppressed irreversible capacity in formation cycles by the introduction of EC and FEC into DME-based LHCE.
- Superior cycling performance of Gr||NMC811 cells achieved with DME-LHCEs containing EC and FEC.

Technical Accomplishments and Progress Progress on Scaling Up MgTi-doped LiNiO₂ (NMT)




- Hydroxide precursor synthesis has been scaled up to 100 g per batch.
- Optimization of calcination conditions for scaled-up precursor is being conducted.

Technical Accomplishments and Progress Baseline Project Progress Cell Testing Results

Parameter	Specification
Cathode-level Specific Capacity	219.01 mAh/g
Cathode-level Specific Energy	812.73 Wh/kg
Cell-level Specific Energy	275.60 Wh/kg

Cycling Protocol

Discharge: CCD to 2.5 V at 0.833 A

Charge: CCCV to 4.4 V at 0.833 A for 5 hrs